Job Overview
Category
Computer Occupations
Ready to Apply?
Take the Next Step in Your Career
Join Catalyst IQ and advance your career in Computer Occupations
Apply for This Position
Click the button above to apply on our website
Job Description
<p><p><b>Key Responsibilities :</b></p><p><b><br/></b></p><p><b>LLM & Machine Learning :</b></p><p><br/></p><p>- Work with a variety of LLMs including Hugging Face OSS models, GPT (OpenAI), Gemini (Google), Claude (Anthropic), Mixtral (Mistral), and LLaMA (Meta).</p><p><br/></p><p>- Fine-tune and deploy LLMs for various use cases such as summarization, Q&A, RAG (Retrieval Augmented Generation), chatbots, document intelligence, etc.<br/><br/></p><p>- Evaluate and compare model performance and apply optimization & MLOps :</b></p><p><br/></p><p>- Design and implement complete LLMOps workflows using tools like : MLFlow for experiment tracking and model versioning.</p></p><p><br/></p><p>- LangChain, LangGraph, LangFlow for LLM orchestration.</p><p><br/></p><p>- Langfuse, LlamaIndex for observability and indexing.<br/><br/></p><p>- AWS SageMaker, Bedrock and Azure AI for model deployment and management.<br/><br/></p><p>- Monitor, log, and optimize inference latency and model behavior in & Vector Stores :</b></p><p><br/></p><p>- Work with structured and unstructured data using MongoDB and PostgreSQL.</p><p><br/></p>- Leverage vector databases like Pinecone and ChromaDB for RAG-based applications.<br/><br/></p><p>- Develop scalable data ingestion and transformation pipelines for AI training and & DevOps :</b></p><p><br/></p><p>- Deploy and manage AI workloads on AWS and Azure cloud environments.</p><p><br/></p>- Use Docker and Kubernetes for containerization and orchestration of LLM-based & Integration :</b></p><p><br/></p><p>- Build robust APIs and microservices using Python, with integrations using SQL and JavaScript where needed.</p><p><br/></p><p>- Develop UI interfaces or dashboards to visualize model outputs and system Skills :</b></p><p><br/></p><p>- Hands-on experience with multiple LLMs including GPT, Claude, Mixtral, Llama, etc.</p><p><br/></p>- Expertise in MLOps / LLMOps frameworks : MLFlow, LangChain, LangGraph, LangFlow, </p><p>Langfuse, etc.<br/><br/></p><p>- Strong understanding of cloud-native AI deployment (AWS SageMaker, Bedrock, Azure AI).<br/><br/></p><p>- Proficient in vector databases like Pinecone and ChromaDB.<br/><br/></p><p>- Familiarity with DevOps best practices using Docker and Kubernetes.<br/><br/></p><p>- Proficient in Python, SQL, and Qualifications : </b></p><p><br/></p>- Previous experience building and deploying production-grade LLM or GenAI applications.<br/><br/></p><p>- Familiarity with real-time or low-latency systems involving LLMs.<br/><br/></p><p>- Certification in AWS or Azure cloud platforms.<br/><br/></p><p>- Exposure to prompt engineering, model fine-tuning, and LLM evaluation techniques</p><br/></p> (ref:hirist.tech)
Don't Miss This Opportunity!
Catalyst IQ is actively hiring for this Machine Learning Engineer - Data Modeling position
Apply Now